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1. Introduction

The study of supersymmetric D–brane probes in a given background is relevant to extract

stringy information in the framework of gauge/gravity duality. This is a well-known fact

since Witten early showed, in the case of N = 4 supersymmetric Yang–Mills (SYM) theory,

that the gravity side must contain branes in order to accommodate the Pfaffian operator

–in the SO(2N) case–, as well as the baryon vertex or domain walls arising in SU(N)

gauge theories [1]. Moreover, the introduction of flavor in the gauge theory side forces to

consider an open string sector in the dual theory [2]. As a consequence, any theory in the

universality class of QCD demands a clear understanding of these features.

In the long path from Maldacena’s original setup to more realistic scenarios, an impor-

tant framework has been considered in recent years. If the five-sphere of the background

is replaced by any Sasaki–Einstein five-dimensional manifold X 5, a duality between type

IIB string theory on AdS5×X5 and a superconformal quiver gauge theory arises [3]. Until

two years ago, the only case at hand whose complete metric was known was X 5 = T 1,1,

that leads to the so-called Klebanov–Witten model [4]. More recently, two new families
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of infinitely many Sasaki–Einstein manifolds were built and their metrics were explicitly

constructed. They are labeled by two positive integers Y p,q [5] or three positive integers

La,b,c [6, 7]. Indeed, the former can be seen as a subfamily of the latter. The corresponding

superconformal field theories were constructed almost immediately in, respectively, [8, 9]

and [10 – 12], by exploiting the rich mathematical structure of toric geometry. These fami-

lies exhaust all possible toric Calabi–Yau cones on a base with topology S 2×S3. Research

on AdS/CFT in these superconformal gauge theories has led to a better understanding

of several important issues such as the appearance of duality cascades, a–maximization,

Seiberg duality, etc.

In order to determine the supersymmetric embeddings of D–brane probes we employ

kappa symmetry [13]. Our approach is based on the existence of a matrix Γκ which depends

on the metric induced on the worldvolume of the probe and characterizes its supersym-

metric embeddings. If ε is a Killing spinor of the background, only those embeddings such

that Γκ ε = ε preserve a fraction of the background supersymmetry [14]. This condition

gives rise to a set of first-order BPS differential equations whose solutions determine the

details of the embedding. As well, they solve the equations of motion derived from the

DBI action of the probe while saturating a bound for the energy, as it usually happens in

the case of worldvolume solitons [15].

D-brane probes in the Klebanov–Witten model were studied in full detail in [16]. In the

case of Y p,q superconformal gauge theories, the exhaustive research was undertaken more

recently in [17]. These articles explore interesting features such as excitations of dibaryons,

the baryon vertex, the presence of domain walls, fat strings and defect conformal field

theories in the quiver theory side. In this letter, we aim at filling the gap by giving the

main results in the case of La,b,c theories.

The content of this article is organized as follows. In section 2 we review those aspects

of the La,b,c spaces that we need afterwards. Section 3 deals with the construction of local

complex coordinates and other geometrical aspects of the Calabi–Yau cone, CLa,b,c. In

section 4 we provide the expression for the Killing spinors on AdS5 × La,b,c. We briefly

describe the basics of the dual superconformal quiver theories in section 5. We consider D3–

branes wrapping supersymmetric 3-cycles dual to dibaryonic operators in section 6. Besides

matching their quantum numbers, we find general holomorphic embeddings corresponding

to divisors of CLa,b,c. In section 7 we consider D5–branes with the focus on fractional branes,

while section 8 deals with spacetime filling configurations of D7–branes that can be used to

introduce flavor. We finally comment on some stable non-supersymmetric configurations

representing fat strings and domain walls in section 9, where we furthermore present our

conclusions.

2. The La,b,c geometry

The Sasaki–Einstein manifold La,b,c is a five-dimensional space with topology S2 × S3,

whose metric can be written as [6]:

ds2
La,b,c = ds2

4 + (dτ + σ)2 , (2.1)
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where ds2
4 is a local Kähler–Einstein metric, with Kähler form J4 = 1

2dσ, given by

ds2
4 =

ρ2

4∆x
dx2 +

ρ2

∆θ
dθ2 +

∆x

ρ2

(
sin2 θ

α
dφ+

cos2 θ

β
dψ

)2

+

+
∆θ sin2 θ cos2 θ

ρ2

[(
1− x

α

)
dφ−

(
1− x

β

)
dψ

]2

, (2.2)

the quantities ∆x, ∆θ, ρ
2 and σ reading

∆x = x(α− x)(β − x)− µ ,
∆θ = α cos2 θ + β sin2 θ , ρ2 = ∆θ − x ,

σ =

(
1− x

α

)
sin2 θ dφ+

(
1− x

β

)
cos2 θ dψ . (2.3)

The ranges of the different coordinates are 0 ≤ θ ≤ π/2, x1 ≤ x ≤ x2, 0 ≤ φ, ψ < 2π,

where x1 and x2 are the smallest roots of the cubic equation ∆x = 0. A natural tetrad

frame for this space reads

e1 =
ρ√
∆θ

dθ , e2 =

√
∆θ sin θ cos θ

ρ

((
1− x

α

)
dφ−

(
1− x

β

)
dψ

)
,

e3 =

√
∆x

ρ

(
sin2 θ

α
dφ+

cos2 θ

β
dψ

)
,

e4 =
ρ

2
√

∆x
dx , e5 = ( dτ + σ) . (2.4)

Notice that, in this frame, J4 = e1 ∧ e2 + e3 ∧ e4. Let us now define ai, bi and ci (i = 1, 2)

as follows:

ai =
αci

xi − α
, bi =

βci
xi − β

, ci =
(α− xi)(β − xi)

2(α+ β)xi − αβ − 3x2
i

. (2.5)

The coordinate τ happens to be compact and varies between 0 and ∆τ ,

∆τ =
2πk|c1|

b
, k = gcd (a, b) . (2.6)

The ai, bi and ci constants are related to the integers a, b, c of La,b,c by means of the

relations:

a a1 + b a2 + c = 0 , a b1 + b b2 + d = 0 , a c1 + b c2 = 0 , (2.7)

where d = a+ b− c. The constants α, β and µ appearing in the metric are related to the

roots x1, x2 and x3 of ∆x as

µ = x1x2x3 , α+ β = x1 + x2 + x3 , αβ = x1x2 + x1x3 + x2x3 . (2.8)
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Moreover, it follows from (2.7) that all ratios bewteen the four quantities a1c2 − a2c1,

b1c2 − b2c1, c1, and c2 must be rational. Actually, one can prove that:

a1c2 − a2c1
c1

=
c

b
,

b1c2 − b2c1
c1

=
d

b
,

c1
c2

= − b

a
. (2.9)

Any other ratio between (a, b, c, d) can be obtained by combining these equations. In

particular, from (2.5), (2.8) and (2.9), one can rewrite some of these relations as:

a

b
=
x1

x2

x3 − x1

x3 − x2
,

a

c
=

(α− x2)(x3 − x1)

α(β − x1)
,

c

d
=
α

β

(β − x1)(β − x2)

(α− x1)(α− x2)
=
α

β

x3 − α
x3 − β

. (2.10)

The manifold has U(1) × U(1) × U(1) isometry. It is, thus, toric. Its volume can be

computed from the metric with the result:

Vol(La,b,c) =
(x2 − x1)(α+ β − x1 − x2) |c1|

αβb
π3 . (2.11)

Other geometrical aspects of these spaces can be found in [6, 8].

3. Complex coordinates on CLa,b,c

In order to construct a set of local complex coordinates on the Calabi–Yau cone on La,b,c,

CLa,b,c, let us introduce the following basis of closed one-forms 1

η̂1 = α
cot θ

∆θ
dθ − α(β − x)

2∆x
dx+ idφ ,

η̂2 = −β tan θ

∆θ
dθ − β(α− x)

2∆x
dx+ idψ ,

η̂3 =
dr

r
+ idτ + (β − α)

sin(2θ)

2∆θ
dθ +

(α− x)(β − x)

2∆x
dx . (3.1)

From these quantities, it is possible to define a set of (1, 0)-forms ηi as the following linear

combinations:

η1 = η̂1 − η̂2 , η2 = η̂1 + η̂2 , η3 = 3η̂3 + η̂1 + η̂2 . (3.2)

One can immediately check that they are integrable, ηi = dzi

zi
. The explicit form of the

complex coordinates zi is:

z1 = tan θ f1(x) ei(φ−ψ) , z2 =
sin(2θ)

f2(x) ∆θ
ei(φ+ψ) ,

z3 = r3 sin(2θ)
√

∆θ∆x e
i(3τ+φ+ψ) , (3.3)

where

f1(x) = P1(x)α−β , f2(x) = P0(x)2αβ P1(x)−(α+β) , (3.4)

1Notice that there are a few sign differences in our conventions as compared to those in [18].
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and the functions Pq(x) are defined as

Pq(x) = exp

(∫
xq dx

2 ∆x

)
=

3∏

i=1

(x− xi)
1
2

x
q
iQ3

j 6=i (xi−xj) . (3.5)

In terms of these (1, 0)-forms, it is now fairly simple to work out the two-form Ω4,

Ω4 = 3ei(φ+ψ) sin(2θ)
√

∆θ∆x η1 ∧ η2 , (3.6)

obeying dΩ4 = 3iσ ∧ Ω4. By using these properties one can verify that the three-form:

Ω = r2 e3iτ Ω4 ∧ [ dr + ir (dτ + σ) ] , (3.7)

is closed. Moreover, the explicit expression for Ω in terms of the above defined closed and

integrable (1, 0)-forms reads

Ω = r3 sin(2θ) ei(3τ+φ+ψ)
√

∆θ ∆x η1 ∧ η2 ∧ η3 , (3.8)

which shows that Ω ∧ ηi = 0. In terms of the complex coordinates zi, the form Ω adopts

a simple expression from which it is clear that it is the holomorphic (3,0) form of the

Calabi-Yau cone CLa,b,c,
Ω =

dz1 ∧ dz2 ∧ dz3

z1z2
. (3.9)

The expression (3.8) allows for the right identification of the angle conjugated to the R–

symmetry [10],

ψ′ = 3τ + φ+ ψ . (3.10)

Finally, starting from J4, we can write the Kähler form J of CLa,b,c,

J = r2 J4 + r dr ∧ e5 , dJ = 0 . (3.11)

Notice that all the expressions written in this section reduce to those of CY p,q provided

a = p− q , b = p+ q , c = p ,

3x− α = 2α y , µ =
4

27
(1− a)α3 , (3.12)

θ̃ = 2θ , β̃ = −(φ+ ψ) , φ̃ = φ− ψ ,

while (3.10) provides the right identification with the U(1)R angle in Y p,q. We shall use

this limiting case several times along the letter to make contact with the results found

in [17].

4. Killing spinors for AdS5 × La,b,c

In order to study D–brane probes’ embeddings by means of kappa symmetry, we need

to know the Killing spinors of the string theory background. The solution of type IIB

supergravity corresponding to the near-horizon region of a stack of N coincident D3-branes
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located at the apex of the CLa,b,c cone, is characterized by a ten-dimensional metric,

ds2 =
r2

L2
dx2

1,3 +
L2

r2
dr2 + L2 ds2

La,b,c , (4.1)

and a self-dual Ramond-Ramond five-form F (5) given by:

gs F
(5) = d4x ∧ dh−1 + Hodge dual , h(r) =

L4

r4
. (4.2)

The quantization condition of the flux of F (5) determines the constant L in terms of gs,

N , α′ and the volume of the Sasaki–Einstein space:

L4 =
4π4

Vol(La,b,c)
gsN (α′)2 . (4.3)

The Killing spinors of the AdS5 ×La,b,c background can be written in terms of a constant

spinor η,

ε = e
i
2

(3τ+φ+ψ) r−
Γ∗
2

(
1 +

Γr
2L2

xα Γxα (1 + Γ∗ )
)
η , (4.4)

where we have introduced the matrix Γ∗ ≡ iΓx0x1x2x3 . The spinor η satisfies the projec-

tions [18]:

Γ12 η = iη , Γ34 η = iη , (4.5)

this implying that ε also satisfies the same projections. It is convenient to decompose the

constant spinor η according to its Γ∗–parity, Γ∗ η± = ±η±. Using this decomposition, we

obtain two types of Killing spinors:

e−
i
2

(3τ+φ+ψ) ε− = r1/2 η− ,

e−
i
2

(3τ+φ+ψ) ε+ = r−1/2 η+ +
r1/2

L2
Γr x

α Γxα η+ . (4.6)

The spinors ε− satisfy Γ∗ ε− = −ε−, whereas the ε+’s are not eigenvectors of Γ∗. The

former correspond to ordinary supercharges while the latter, which depend on the xα

coordinates, are related to the superconformal supersymmetries. The only dependence on

the coordinates of La,b,c is through the exponential of ψ′ = 3τ + φ + ψ. This angle, as

explained above, is identified with the U(1)R of the superconformal quiver theory.

It is finally convenient to present the explicit expression for the Killing spinors when

AdS5 is described by its global coordinates,

ds2
AdS5

= L2
[
− cosh2 % dt2 + d%2 + sinh2 % dΩ2

3

]
, (4.7)

where dΩ2
3 is the round metric of a unit three-sphere. Let us parameterize dΩ2

3 in terms of

three angles (α1, α2, α3) as dΩ2
3 = (dα1)2 + sin2 α1

(
(dα2)2 + sin2 α2 (dα3)2

)
. The Killing

spinors in these coordinates take the form:

ε = e
i
2

(3τ+φ+ψ) e−i
%
2

Γ%γ∗ e−i
t
2

Γtγ∗ e−
α1

2
Γα1ρ e−

α2

2
Γα2α1 e−

α3

2
Γα3α2 η , (4.8)

where γ∗ ≡ Γt Γ% Γα1 α2 α3 and η is a constant spinor that satisfies the same conditions as

in (4.5).
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Field R− charge number U(1)B U(1)F1 U(1)F2

Y 2
3
x3−x1
x3

b a 1 0

Z 2
3
x3−x2
x3

a b 0 k

U1
2
3
α
x3

d −c 0 l

U2
2
3
β
x3

c −d −1 −k − l

V1
2
3

2x3+x1−β
x3

c− a b− c 0 k + l

V2
2
3

2x3+x1−α
x3

b− c c− a −1 −l

Table 1: Charges for bifundamental chiral fields in the quiver dual to La,b,c [11].

5. Quiver theories for La,b,c spaces

The La,b,c superconformal field theories were first constructed in [10 – 12]. They are four

dimensional quiver theories whose main features we would like to briefly remind. The

gauge theory for La,b,c has Ng = a+ b gauge groups and Nf = a+ 3b bifundamental fields.

The latter are summarized in table 1. There is a U(1)2
F flavor symmetry that corresponds,

in the gravity side, to the subgroup of isometries that leave invariant the Killing spinors.

There is a certain ambiguity in the choice of flavor symmetries in the gauge theory side, as

long as they can mix with the U(1)B baryonic symmetry group. This fact is reflected in the

appearance of two integers k and l in the U(1)2
F charge assignments, whose only restriction

is given by the identity c k + b l = 1 (here, it is assumed that b and c are coprime) [11].

The charge assignments in table 1 fulfill a number of nontrivial constraints. For ex-

ample, all linear anomalies vanish, Tr U(1)B = Tr U(1)F1 = Tr U(1)F2 = 0. The cubic

t’ Hooft anomaly, Tr U(1)3
B , vanishes as well. The superpotential of the theory has three

kind of terms; a quartic one,

Tr Y U1 Z U2 , (5.1)

and two cubic terms,

Tr Y U1 V2 , T r Y U2 V1 . (5.2)

Their R-charge equals two and they are neutral with respect to the baryonic and flavor

symmetries. The number of terms of each sort is uniquely fixed by the multiplicities of

the fields to be, respectively, 2 a, 2 (b − c) and 2 (c − a) [11]. The total number of terms,

then, equals Nf −Ng. In the Y p,q limit, the isometry of the space –thus the global flavor

– 7 –
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symmetry– enhances, U 1 and U2 (also V 1 and V 2) becoming a doublet under the enhanced

SU(2) group. The superpotential reduces in this limit to the Y p,q expression [9]. More

details about the La,b,c superconformal gauge theories can be found in [10 – 12].

6. D3-branes on three-cycles

In this section we consider D3–brane probes wrapping three-cycles of La,b,c. These are

pointlike objects from the gauge theory point of view, corresponding to dibaryons con-

structed from the different bifundamental fields of the quiver theory. There are other

configurations of physical interest that we will not discuss in this letter. Though, we will

briefly discuss their most salient features in section 9.

Given a D3–brane probe wrapping a supersymmetric three-cycle C, the conformal

dimension ∆ of the corresponding dual operator is proportional to the volume of the

wrapped three-cycle,

∆ =
π

2

N

L3

Vol(C)
Vol(La,b,c)

. (6.1)

Since the R-charge of a protected operator is related to its dimension by R = 2
3∆, we can

readily compute the R-charge of the dibaryon operators. On the other hand, the baryon

number associated to the D3–brane probe wrapping C (in units of N) can be obtained as

the integral over the cycle of the pullback of a (2, 1)-form Ω2,1:

B(C) = ±i
∫

C
P [ Ω2,1 ]C . (6.2)

The explicit form of Ω2,1 is:

Ω2,1 =
K

ρ4

( dr
r

+ i e5
)
∧
(
e1 ∧ e2 − e3 ∧ e4

)
, (6.3)

where K is a constant that will be determine below. Armed with these expression, we can

extract the relevant gauge theory information of the configurations under study.

6.1 U1 dibaryons

Let us take the worldvolume coordinates for the D3-brane probe to be ξµ = (t, x, ψ, τ),

with θ = θ0 and φ = φ0 constant, and let us assume that the brane is located at a fixed

point in AdS5. The action of the kappa symmetry matrix on the Killing spinor reads

Γκ ε = − i

4!
√−det g

εµ1···µ4 γµ1 ···µ4 ε = − iL4

√−det g
[ a5Γt5 + a135 Γt135 ] ε , (6.4)

where

a5 = −icosh %

2β
cos2 θ , a135 = − cosh %

4
√

∆x

(
1− x

β

)√
∆θ sin(2θ) . (6.5)

Compatibility of (6.4) with the projections (4.5) demands a135 = 0. Since ∆θ cannot vanish

for positive α and β, this condition implies sin(2θ) = 0, i.e. θ = 0 or π/2. Due to the fact

that, for these configurations, the determinant of the induced metric is:

−det g =
L8

4

[
∆θ sin2(2θ)

4∆x

(
1− x

β

)2

+
cos4 θ

β2

]
cosh2 % , (6.6)

– 8 –
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we must discard the θ = π/2 solution since the volume of the cycle would vanish in that

case. Thus, the D3–brane probe is placed at θ = 0 and the kappa symmetry condition

Γκ ε = ε reduces to the new projection:

Γt5 ε = − ε , (6.7)

which can only be imposed at the center of AdS5. The corresponding configuration pre-

serves four supersymmetries.

Given that the volume of U1 can be easily computed with the result

Vol(U1 ) =
πL3

β
(x2 − x1)

∆τ

k
, (6.8)

the corresponding value for the R-charge is:

RU1 =
2

3

α

α+ β − x1 − x2
N =

2α

3x3
N , (6.9)

where we have used the second relation in (2.8). This result agrees with the value expected

for the operator det(U1) [11]. Let us now compute the baryon number associated to the

D3–brane probe wrapping U1. For the U1 cycle, we get

B(U1) = i

∫

U1

P [ Ω2,1 ]U1
= − 2π2

αβ

c

a b
K , (6.10)

where we have used the second identity in (2.10). From the field theory analysis [11] it is

known that the baryon number of the U1 field should be −c (see table 1). We can use this

result to fix the constant K to:

K = − αβ
2π2

a b . (6.11)

Once it is fixed, formulas (6.2) and (6.3) allow us to compute the baryon number of any

D3–brane probe wrapping a three-cycle.

6.2 U2 dibaryons

Let us again locate the D3-brane probe at a fixed point in AdS5 and take the following set

of worldvolume coordinates ξµ = (t, x, φ, τ), with constant θ = θ0 and ψ = ψ0. The kappa

symmetry matrix now acts on the Killing spinor as

Γκε = − iL4

√−det g
[ b5Γt5 + b135 Γt135 ] ε , (6.12)

where

b5 = −icosh %

2α
sin2 θ , b135 =

cosh %

4
√

∆x

(
1− x

α

)√
∆θ sin(2θ) . (6.13)

The BPS condition is b135 = 0, which can only be satisfied if sin(2θ) = 0. We have to

select now the solution θ = π
2 if we want to have a non-zero volume for the cycle. The

above condition defines the U2 cycle. The associated R-charge can be computed as above

and reads:

RU2 =
2β

3x3
N , (6.14)

– 9 –
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in precise agreement with the gauge theory result [11]. The baryon number reads

B(U2) = i

∫

U2

P [ Ω2,1 ]U2
= −c β

α

(α− x1)(α − x2)

(β − x1)(β − x2)
, (6.15)

where we have used (6.11) and, after the third identity in (2.10), we get:

B(U2) = −d = −(a+ b− c) , (6.16)

In agreement with the field theory result [11] (see table 1). If we consider the case a = p−q,
b = p+ q and c = p, which amounts to Y p,q, a U(1) factor of the isometry group enhances

to SU(2) and these dibaryons are constructed out of a doublet of bifundamental fields.

6.3 Y,Z dibaryons

We now take the following set of worldvolume coordinates ξµ = (t, θ, ψ, τ) and the em-

bedding x = x0 and ψ′ = ψ′0, where ψ′0 is a constant and ψ′ = 3τ + φ + ψ is the angle

conjugated to the U(1)R charge. We implement this embedding in our coordinates by

setting φ(ψ, τ) = ψ′0 − 3τ − ψ. In this case

Γκε = − iL4

√−det g
[ c3Γt3 + c5Γt5 + c135 Γt135 ] ε , (6.17)

where

c3 = 3i
ρ cosh %

2αβ
sin(2θ)

√
∆x ,

c5 = i
cosh %

2αβ
sin(2θ)

(
3x2 − 2(α+ β)x+ αβ

)
,

c135 =
cosh %

αβ

α cos2 θ (1− 3 sin2 θ) − β sin2 θ (1− 3 cos2 θ)√
∆θ

√
∆x . (6.18)

The BPS conditions are, as before, c3 = c135 = 0. Clearly these conditions are satisfied

only if ∆x = 0, or, in other words, when

x = x1 , x2 . (6.19)

Notice that the value of ψ′0 is undetermined. The induced volume takes the form:

√
−det g |x=xi

=
L4

2αβ

∣∣3x2
i − 2(α+ β)xi + αβ

∣∣ sin(2θ) cosh % . (6.20)

As before, the compatibility with the AdS5 SUSY requires that ρ = 0. Let us denote by

Xi the cycle with x = xi. We get that the volumes are given by:

Vol(Xi) =
π

k α β

∣∣3x2
i − 2(α+ β)xi + αβ

∣∣ ∆τ L3 . (6.21)

From this result we get the corresponding values of the R-charges, namely:

RY =
2N

3

x3 − x1

x3
, RZ =

2N

3

x3 − x2

x3
, (6.22)
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where Y = X1 and Z = X2. Let us now compute the baryon number of these cycles. The

pullback of the three-form Ω2,1 to the cycles with x = xi and ψ′ = ψ′0 is:

P [ Ω2,1 ]x=xi
= iK

(
3x2

i − 2(α+ β)xi + αβ
)

2αβ

sin(2θ)

ρ4
dθ ∧ dψ ∧ dτ , (6.23)

where K is the constant written in (6.11). We obtain:

B(Xi) = −i
∫

Xi
P [ Ω2,1 ]Xi =

π

k αβ
K

3x2
i − 2(α + β)xi + αβ

(α− xi) (β − xi)
∆τ . (6.24)

Taking into account the third identity in (2.10), we get:

B(Y) = a , B(Z) = b , (6.25)

as it should [11] (see table 1).

6.4 Generalized embeddings

In this subsection we show that there are generalized embeddings of D3–brane probes that

can be written in terms of the local complex coordinates (3.3) as holomorphic embeddings

or divisors of CLa,b,c. Let us consider, for example, (t, x, ψ, τ) as worldvolume coordinates

and the ansatz

θ = θ(x, ψ) , φ = φ(x, ψ) . (6.26)

This ansatz is a natural generalization of the one used in section 6.1. The case where the

worldvolume coordinate ψ is changed by φ, can be easily addressed by changing α → β

and θ → π/2 − θ. Putting the D3-brane at the center of AdS5, we get that the kappa

symmetry condition is given by an expression as in (6.4)

Γκε = − iL4

√−det g
[ a5Γt5 + a135 Γt135 ] ε , (6.27)

where a5 and a135 are now given by:

a5 = − i
2

[
cos2 θ

β
+

sin2 θ

α
φψ + sin(2θ)

{(
1− x

β

)
θx −

(
1− x

α

)
(θxφψ − θψφx)

}]
,

a135 = −
√

∆θ

∆x

sin(2θ)

4

[
1− x

β
−
(

1− x

α

)
φψ

]
+

√
∆x

∆θ

[
cos2 θ

β
θx +

+
sin2 θ

α
(θxφψ − θψφx)

]
+
i

2

[√
∆x∆θ

sin(2θ)

αβ
φx −

ρ2

√
∆x∆θ

θψ

]
. (6.28)

The BPS condition a135 = 0 reduces to the following pair of differential equations:

cos2 θ

β
θx +

sin2 θ

α
(θxφψ − θψφx) =

∆θ

∆x

[
1− x

β
−
(

1− x

α

)
φψ

]
sin(2θ)

4
,

ρ2θψ =
∆x∆θ

αβ
sin(2θ)φx . (6.29)
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The integral of the above equations can be simply written as:

z2 = f(z1) , (6.30)

where z1 and z2 are the local complex coordinates of CLa,b,c and f(z1) is an arbitrary

holomorphic function. Actually, if ξµ is an arbitrary worldvolume coordinate, one has:

∂ξµ z2 = f ′(z1) ∂ξµ z1 . (6.31)

One can eliminate the function f in the above equation by considering the derivatives with

respect to two worldvolume coordinates ξµ and ξν . One gets:

∂ξµ log z2 ∂ξν log z1 = ∂ξν log z2 ∂ξµ log z1 . (6.32)

Taking ξµ = x and ξν = ψ in the previous equation and considering that the other coordi-

nates θ and φ entering z1 and z2 depend on (x, ψ) (as in the ansatz (6.26)), one can prove

that (6.32) is equivalent to the system of BPS equations (6.29).

We have checked that the Hamiltonian density of a static D3–brane probe of the kind

discussed in this section satisfies a bound that is saturated when the BPS equations (6.29)

hold. This comes from the fact that, from the point of view of the probes, these config-

urations can be regarded as BPS worldvolume solitons. We have also checked that these

generalized embeddings are calibrated

P
[ 1

2
J ∧ J

]
D

= Vol(D) , (6.33)

where Vol(D) is the volume form of the divisor D, namely Vol(D) = r3 dr ∧ Vol(C). It is

important to remind at this point that supersymmetry holds locally but it is not always

true that a general embedding makes sense globally. We have seen examples of this feature

in Y p,q [17].

7. D5-branes

Let us consider a D5-brane probe that creates a codimension one defect on the field theory.

It represents a domain wall in the gauge theory side such that, when one crosses one of

these objects, the gauge groups change and one passes from an N = 1 superconformal field

theory to a cascading theory with fractional branes. The setup for the supergravity dual

of this cascading theory was proposed in [8].

We choose the following set of worldvolume coordinates: ξµ = (t, x1, x2, r, θ, φ), and

we will adopt the ansatz x = x(θ, φ), ψ = ψ(θ, φ), τ = τ(θ, φ) with x3 constant. The kappa

symmetry matrix acts on the spinor ε as:

Γκε =
i√−det g

r2

L2
Γx0x1x2rγθφε

∗ =
i√−det g

r2Γx0x1x2r[bI + b15Γ15 + b35Γ35 + b13Γ13]ε∗,

(7.1)
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where

bI =
i

2

[
sin(2θ)

(
1− x

α
−
(

1− x

β

)
ψφ

)
− sin2 θ

α
xθ +

cos2 θ

β
(ψθ xφ − ψφ xθ )

]
,

b15 =
ρ√
∆θ

[(
1− x

α

)
sin2 θ +

(
1− x

β

)
cos2 θ ψφ + τφ

]
−

− i
2

sin(2θ)

√
∆θ

ρ

[(
1− x

α

)[
τθ +

(
1− x

β

)
ψθ

]
+

(
1− x

β

)(
τφ ψθ − τθ ψφ

)]
,

b35 =

√
∆x

ρ

[
α− β
4αβ

sin2(2θ)ψθ −
sin2 θ

α
τθ +

cos2 θ

β

(
τφ ψθ − τθ ψφ

)]
+

+
i

2

ρ√
∆x

[(
1− x

α

)
sin2 θ xθ−

(
1− x

β

)
cos2 θ(ψθ xφ−ψφ xθ ) + τφ xθ−τθ xφ

]
,

b13 =
1

4

√
∆θ

∆x
sin(2θ)

[(
1− x

α

)
xθ +

(
1− x

β

)
(ψθ xφ − ψφ xθ )

]
+

+

√
∆x

∆θ

[
sin2 θ

α
+

cos2 θ

β
ψφ

]
+
i

2

[
ρ2

√
∆x∆θ

xφ −
√

∆x∆θ
sin(2θ)

αβ
ψθ

]
. (7.2)

The BPS conditions are bI = b15 = b35 = 0. The imaginary part of b15 is zero if ψθ = τθ = 0,

i.e., ψ = ψ(φ), τ = τ(φ). Let us assume that this is the case and define the quantities n

and m as:

ψφ = n , τφ = m. (7.3)

Clearly n and m are independent of the angle θ. Moreover, from the vanishing of the real

part of b15 and of the imaginary part of b35 we get an algebraic equation for x, which can

be solved as:

x = αβ
sin2 θ + n cos2 θ +m

β sin2 θ + nα cos2 θ
. (7.4)

On the other hand, when ψθ = 0 and ψφ = n the vanishing of bI is equivalent to the

equation: [
sin2 θ

α
+

cos2 θ

β
n

]
xθ = sin(2θ)

(
1− x

α
−
(

1− x

β

)
n

)
, (7.5)

which is certainly satisfied by our function (7.4). For an embedding satisfying (7.3)

and (7.4) one can check that
√−det g = r2 | b13 |. Therefore, for these embeddings, Γκ

acts on the Killing spinors as:

Γκ ε = ieiδ13 Γx0x1x2r Γ13 ε
∗ , (7.6)

where δ13 is the phase of b13. In order to implement correctly the kappa symmetry condition

Γκ ε = ε, the phase δ13 must be constant along the worldvolume of the probe. By inspecting

the form of the coefficient b13 in (7.2), one readily concludes that b13 must be real, which

happens only when xφ = 0. Moreover, it follows from (7.4) that x is independent of φ only

when n and m are constant. Thus, ψ and τ are linear functions of the angle φ, namely:

ψ = nφ+ ψ0 , τ = mφ+ τ0 , (7.7)

– 13 –
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where ψ0 and τ0 are constant. Notice that in these conditions the equation Γκ ε = ε

reduces to

iΓx0x1x2r Γ13 ε
∗ = ε . (7.8)

Due to the presence of the complex conjugation, (7.8) is only consistent if the R-charge angle

ψ′ = 3τ + φ+ ψ is constant along the worldvolume (see the expression of ε in (4.4)). This

in turn gives rise to an additional restriction to the possible supersymmetric embeddings.

Indeed, the condition 3τ + φ + ψ = ψ′0 = constant implies that the constants n and m

satisfy

3m+ n+ 1 = 0 . (7.9)

Thus, the possible supersymmetric embeddings of the D5-brane are labeled by a constant

n and are given by:

ψ = nφ+ ψ0 , τ = −n+ 1

3
φ+ τ0 ,

x =
αβ

3

2− n− 3(1− n) cos2 θ

β + (nα− β) cos2 θ
. (7.10)

It can be now checked as in refs. [16, 17] that the projection (7.8) can be converted into

a set of algebraic conditions on the constant spinors η± of (4.6). These conditions involve

a projector which depends on the constant R-charge angle ψ ′0 = 3τ0 + ψ0 and has four

possible solutions. Therefore these embeddings are 1/8 supersymmetric.

The configuration obtained in this section can be also shown to saturate a Bogomol’nyi

bound in the worldvolume theory of the D5–brane probes. This amounts to a point of view

in which the solution is seen as a worldvolume soliton.

Other configurations of physical interest can be considered at this point. Most notably,

we expect to find stable non-supersymmetric configurations of D5–branes wrapping three

cycles of La,b,c. A similar solution where the D5–brane probe wraps the entire La,b,c man-

ifold, thus corresponding to the baryon vertex of the gauge theory, should also be found.

We will not include the detailed analysis of these aspects in this article.

8. Spacetime filling D7-branes

Let us consider a D7–brane probe that fills the four Minkowski gauge theory directions

while possibly extending along the holographic direction. These configurations are relevant

to add flavor to the gauge theory. In particular, the study of fluctuations around them

provides the meson spectrum. We start from the following set of worldvolume coordinates

ξµ = (x0, x1, x2, x3, x, ψ, θ, φ) and the ansatz r = r(x, θ), τ = τ(ψ, φ). The kappa symmetry

matrix in this case reduces to:

Γκ ε = −i r4

L4
√−det g

Γx0···x3 γxψθφ ε . (8.1)

Let us assume that the Killing spinor ε satisfies the condition Γ∗ε = −ε, i.e. ε is of the form

ε− and, therefore, one has:

Γx0···x3 ε− = iε− , (8.2)

– 14 –
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which implies Γr5ε− = iε−. Then:

Γκ ε− =
r4

√−det g
[ dI + d15 Γ15 + d35 Γ35 + d13Γ13 ] ε− . (8.3)

In order to express these coefficients in a compact form, let us define Λx and Λθ as:

Λx = − 1

2∆x

[
(α− x ) (β − x ) + α( β − x )τφ + β(α− x )τψ

]
,

Λθ =
1

∆θ

[
(α− β) sin θ cos θ + α cot θ τφ − β tan θ τψ

]
. (8.4)

Then:

dI =
sin θ cos θ

2αβ

[
ρ2 + ∆θ Λθ

rθ
r

+ 4 ∆x Λx
rx
r

]
,

d15 = iρ
sin θ cos θ

2αβ

√
∆θ

[
rθ
r
− Λθ

]
,

d35 = −ρ sin θ cos θ

αβ

√
∆x

[
rx
r
− Λx

]
,

d13 = i
sin θ cos θ

αβ

√
∆θ∆x

[
Λx

rθ
r
− Λθ

rx
r

]
. (8.5)

The BPS conditions are clearly d15 = d35 = d13 = 0. From the vanishing of d15 and d35 we

get the following first-order equations:

rθ
r

= Λθ ,
rx
r

= Λx . (8.6)

Notice that d13 = 0 as a consequence of these equations. By looking at the explicit form

of our ansatz and at the expression of Λθ and Λx in (8.4), one realizes that the only

dependence on the angles φ and ψ in the first-order equations (8.6) comes from the partial

derivatives of τ(ψ, φ). For consistency these derivatives must be constant, i.e. τψ = nψ,

τφ = nφ, where nψ and nφ are constants. These equations can be trivially integrated:

τ(ψ, φ) = nψ ψ + nφ φ+ τ0 . (8.7)

Notice that τ(ψ, φ) relates angles whose periods are not congruent. Thus, the D7–brane

spans a submanifold that is not, in general, a cycle. It is worth reminding that this is

not a problem for flavor branes. If the BPS conditions (8.6) hold one can check that

r4dI =
√−det g and, therefore, one has indeed that Γκε = ε for any Killing spinor ε = ε−,

with ε− as in (4.6). Thus these configurations preserve the four ordinary supersymmetries

of the background.

In order to get the dependence of r on θ and x it is interesting to notice that, if τ(ψ, φ)

is given by (8.7), the integrals of Λθ and Λx turn out to be:

∫
Λθ dθ = log

[
(sin θ)nφ (cos θ)nψ

∆
nφ+nψ+1

2
θ

]
,

∫
Λx dx = log

[
[f1(x)]

nφ−nψ
2

∆
1
6
x [f2(x)]

nφ+nψ
2

+ 1
3

]
, (8.8)
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where f1(x) and f2(x) are the functions defined in (3.4). From this result it straightforward

to obtain the general solution of r(θ, x):

r(θ, x) = C
(sin θ)nφ (cos θ)nψ

∆
nφ+nψ+1

2
θ

[f1(x)]
nφ−nψ

2

∆
1
6
x [f2(x)]

nφ+nψ
2

+ 1
3

, (8.9)

where C is a constant. Notice that the function r(x, θ) diverges for some particular values of

θ and x. This means that the probe always extends infinitely in the holographic direction.

For particular values of nφ and nψ there is a minimal value of the coordinate r, r?, which

depends on the integration constant C. If one uses this probe as a flavor brane, r? provides

an energy scale that is naturally identified with the mass of the dynamical quarks added

to the gauge theory.

It is finally interesting to write the embedding characterized by eqs. (8.7) and (8.9) in

terms of the complex coordinates z1, z2 and z3 defined in eq. (3.3). Indeed, one can check

that this embedding can be simply written as:

zm1
1 zm2

2 zm3
3 = constant , (8.10)

where m3 6= 0. The relation between the exponents mi and the constants nψ and nφ is the

following:
m1

m3
=

3

2
(nψ − nφ) ,

m2

m3
= −3

2
(nψ + nφ)− 1 . (8.11)

By using the Dirac–Born–Infeld action of the D7–brane, it is again possible to show that

there exists a bound for the energy which is saturated for BPS configurations.

9. Final remarks

In this letter we have worked out supersymmetric configurations involving D–brane probes

in AdS5 × La,b,c. Our study focused on three kinds of branes, namely D3, D5 and D7.

We have dealt with embeddings corresponding to dibaryons, defects and flavor branes in

the gauge theory. For D3–branes wrapping three-cycles in La,b,c we first reproduced all

quantum numbers of the bifundamental chiral fields in the dual quiver theory. We also

found a new class of supersymmetric embeddings of D3–branes in this background that we

identified with a generic holomorphic embedding. The three-cycles wrapped by these D3–

branes are calibrated. In the case of D5–branes, we found an embedding that corresponds

to a codimension one defect. From the point of view of the D5–branes, it can be seen as a

BPS saturated worldvolume soliton. We finally found a spacetime filling D7–brane probe

configuration that can be seen to be holomorphically embedded in the Calabi–Yau, and is

a suitable candidate to introduce flavor in the quiver theory.

Other interesting configurations have been considered following the lines of [17]. We

would only list their main features:

Fat strings If we take a D3–brane with worldvolume coordinates (x0, x1, θ, φ) and

consider an embedding of the form x = x(θ, φ) and ψ = ψ(θ, φ), with the remaining

scalars constant, we see that there is no solution preserving kappa symmetry. However,

– 16 –
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we have obtained a fat string solution by wrapping a probe D3–brane on a two-cycle,

which is the same considered in section 7 for a D5–brane probe. This configuration is not

supersymmetric but it is stable.

D5 on a three-cycle We have found an embedding corresponding to D5–branes that

wrap a three-cycle in La,b,c. They are codimension one in the gauge theory coordinates.

These configurations happen to be non supersymmetric yet stable.

D5 on a two-cycle We studied another embedding where a D5–brane probe wraps a

two-cycle in La,b,c while it extends along the radial coordinate. For this embedding, φ, ψ,

x3 and τ are held constant. This is a supersymmetric configuration. We also considered

turning on a worldvolume flux in the case studied in section 7, and found that it can be done

in a supersymmetric way. The flux in the worldvolume of the brane provides a bending of

the profile x3 of the wall, analogously to what happens in T 1,1 [16] and Y p,q [17].

Another spacetime filling D7 We considered a different spacetime filling D7–brane that

extends infinitely in the radial direction and wraps a three-cycle holomorphically embedded

in La,b,c of the type studied in section 6.4. It preserves four supersymmetries.

D7 on La,b,c We finally studied a D7–brane probe wrapping the entire La,b,c space and

extended along the radial coordinate. From the point of view of the gauge theory, this is

a string-like configuration that preserves two supersymmetries.

It would be interesting to study in more detail the introduction of flavor in these

theories and, in particular, to compute the corresponding meson spectra. These results

exhaust the study of D–brane probes at the tip of toric Calabi–Yau cones on a base with

topology S2 × S3 initiated in [16, 17].
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